Actor-Critic Deep Reinforcement Learning for Solving Job Shop Scheduling Problems
نویسندگان
چکیده
منابع مشابه
Diff-DAC: Distributed Actor-Critic for Multitask Deep Reinforcement Learning
We propose a multiagent distributed actor-critic algorithm for multitask reinforcement learning (MRL), named Diff-DAC. The agents are connected, forming a (possibly sparse) network. Each agent is assigned a task and has access to data from this local task only. During the learning process, the agents are able to communicate some parameters to their neighbors. Since the agents incorporate their ...
متن کاملPretraining Deep Actor-Critic Reinforcement Learning Algorithms With Expert Demonstrations
Pretraining with expert demonstrations have been found useful in speeding up the training process of deep reinforcement learning algorithms since less online simulation data is required. Some people use supervised learning to speed up the process of feature learning, others pretrain the policies by imitating expert demonstrations. However, these methods are unstable and not suitable for actor-c...
متن کاملHeuristic Methods for Solving Job-Shop Scheduling Problems
Solving scheduling problems with Constraint Satisfaction Problems (CSP’s) techniques implies a wide space search with a large number of variables, each one of them with a wide interpretation domain. This paper discusses the application of CSP heuristic techniques (based on the concept of slack of activities) for variable and value ordering on a special type of job-shop scheduling problems in wh...
متن کاملA hybrid method for solving stochastic job shop scheduling problems
This paper presents a nonlinear mathematical programming model for a stochastic job shop scheduling problem. Due to the complexity of the proposed model, traditional algorithms have low capability in producing a feasible solution. Therefore, a hybrid method is proposed to obtain a near-optimal solution within a reasonable amount of time. This method uses a neural network approach to generate in...
متن کاملMemetic algorithms for solving job-shop scheduling problems
The job-shop scheduling problem is well known for its complexity as an NP-hard problem. We have considered JSSPs with an objective of minimizing makespan while satisfying a number of hard constraints. In this paper, we developed a memetic algorithm (MA) for solving JSSPs. Three priority rules were designed, namely partial re-ordering, gap reduction and restricted swapping, and used as local sea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2987820